3.6.19 \(\int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^4} \, dx\) [519]

Optimal. Leaf size=184 \[ \frac {a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{7/2} (a+b)^{7/2} d}-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))} \]

[Out]

a*(2*a^2+3*b^2)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(7/2)/(a+b)^(7/2)/d-1/3*b*tan(d*x+c)
/(a^2-b^2)/d/(a+b*sec(d*x+c))^3-5/6*a*b*tan(d*x+c)/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^2-1/6*b*(11*a^2+4*b^2)*tan(d
*x+c)/(a^2-b^2)^3/d/(a+b*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3918, 4088, 12, 3916, 2738, 214} \begin {gather*} \frac {a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{7/2} (a+b)^{7/2}}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 d \left (a^2-b^2\right )^3 (a+b \sec (c+d x))}-\frac {5 a b \tan (c+d x)}{6 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))^2}-\frac {b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Sec[c + d*x])^4,x]

[Out]

(a*(2*a^2 + 3*b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(7/2)*(a + b)^(7/2)*d) - (b*T
an[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^3) - (5*a*b*Tan[c + d*x])/(6*(a^2 - b^2)^2*d*(a + b*Sec[c +
 d*x])^2) - (b*(11*a^2 + 4*b^2)*Tan[c + d*x])/(6*(a^2 - b^2)^3*d*(a + b*Sec[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3918

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*Cot[e + f*x]*(
(a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a
+ b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 -
b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 4088

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a
*B)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^4} \, dx &=-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {\int \frac {\sec (c+d x) (-3 a+2 b \sec (c+d x))}{(a+b \sec (c+d x))^3} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}+\frac {\int \frac {\sec (c+d x) \left (2 \left (3 a^2+2 b^2\right )-5 a b \sec (c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx}{6 \left (a^2-b^2\right )^2}\\ &=-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}-\frac {\int -\frac {3 a \left (2 a^2+3 b^2\right ) \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{6 \left (a^2-b^2\right )^3}\\ &=-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}+\frac {\left (a \left (2 a^2+3 b^2\right )\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )^3}\\ &=-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}+\frac {\left (a \left (2 a^2+3 b^2\right )\right ) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{2 b \left (a^2-b^2\right )^3}\\ &=-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}+\frac {\left (a \left (2 a^2+3 b^2\right )\right ) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b \left (a^2-b^2\right )^3 d}\\ &=\frac {a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{7/2} (a+b)^{7/2} d}-\frac {b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac {5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac {b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.20, size = 163, normalized size = 0.89 \begin {gather*} -\frac {\frac {12 a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+\frac {b \left (18 a^4+17 a^2 b^2+10 b^4+6 a b \left (9 a^2+b^2\right ) \cos (c+d x)+\left (18 a^4-5 a^2 b^2+2 b^4\right ) \cos (2 (c+d x))\right ) \sin (c+d x)}{(b+a \cos (c+d x))^3}}{12 (a-b)^3 (a+b)^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Sec[c + d*x])^4,x]

[Out]

-1/12*((12*a*(2*a^2 + 3*b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + (b*(18*a^
4 + 17*a^2*b^2 + 10*b^4 + 6*a*b*(9*a^2 + b^2)*Cos[c + d*x] + (18*a^4 - 5*a^2*b^2 + 2*b^4)*Cos[2*(c + d*x)])*Si
n[c + d*x])/(b + a*Cos[c + d*x])^3)/((a - b)^3*(a + b)^3*d)

________________________________________________________________________________________

Maple [A]
time = 0.28, size = 284, normalized size = 1.54

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {\left (6 a^{2}+3 b a +2 b^{2}\right ) b \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a -b \right ) \left (a^{3}+3 b \,a^{2}+3 b^{2} a +b^{3}\right )}+\frac {2 \left (9 a^{2}+b^{2}\right ) b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \left (a^{2}+2 b a +b^{2}\right ) \left (a^{2}-2 b a +b^{2}\right )}-\frac {\left (6 a^{2}-3 b a +2 b^{2}\right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{3}-3 b \,a^{2}+3 b^{2} a -b^{3}\right )}\right )}{\left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a -b \right )^{3}}+\frac {a \left (2 a^{2}+3 b^{2}\right ) \arctanh \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}\right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{d}\) \(284\)
default \(\frac {-\frac {2 \left (-\frac {\left (6 a^{2}+3 b a +2 b^{2}\right ) b \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a -b \right ) \left (a^{3}+3 b \,a^{2}+3 b^{2} a +b^{3}\right )}+\frac {2 \left (9 a^{2}+b^{2}\right ) b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \left (a^{2}+2 b a +b^{2}\right ) \left (a^{2}-2 b a +b^{2}\right )}-\frac {\left (6 a^{2}-3 b a +2 b^{2}\right ) b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{3}-3 b \,a^{2}+3 b^{2} a -b^{3}\right )}\right )}{\left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a -b \right )^{3}}+\frac {a \left (2 a^{2}+3 b^{2}\right ) \arctanh \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}\right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{d}\) \(284\)
risch \(\frac {i b \left (27 a^{6} b \,{\mathrm e}^{5 i \left (d x +c \right )}-18 a^{4} b^{3} {\mathrm e}^{5 i \left (d x +c \right )}+6 a^{2} b^{5} {\mathrm e}^{5 i \left (d x +c \right )}+18 a^{7} {\mathrm e}^{4 i \left (d x +c \right )}+81 a^{5} b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-36 a^{3} b^{4} {\mathrm e}^{4 i \left (d x +c \right )}+12 a \,b^{6} {\mathrm e}^{4 i \left (d x +c \right )}+108 a^{6} b \,{\mathrm e}^{3 i \left (d x +c \right )}+42 a^{4} b^{3} {\mathrm e}^{3 i \left (d x +c \right )}-8 a^{2} b^{5} {\mathrm e}^{3 i \left (d x +c \right )}+8 b^{7} {\mathrm e}^{3 i \left (d x +c \right )}+36 a^{7} {\mathrm e}^{2 i \left (d x +c \right )}+120 a^{5} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-18 a^{3} b^{4} {\mathrm e}^{2 i \left (d x +c \right )}+12 a \,b^{6} {\mathrm e}^{2 i \left (d x +c \right )}+81 a^{6} b \,{\mathrm e}^{i \left (d x +c \right )}-12 a^{4} b^{3} {\mathrm e}^{i \left (d x +c \right )}+6 a^{2} b^{5} {\mathrm e}^{i \left (d x +c \right )}+18 a^{7}-5 a^{5} b^{2}+2 a^{3} b^{4}\right )}{3 a^{3} \left (-a^{2}+b^{2}\right )^{3} d \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )^{3}}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{a \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right )^{3} \left (a -b \right )^{3} d}+\frac {3 a \,b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{a \sqrt {a^{2}-b^{2}}}\right )}{2 \sqrt {a^{2}-b^{2}}\, \left (a +b \right )^{3} \left (a -b \right )^{3} d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+b \sqrt {a^{2}-b^{2}}}{a \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right )^{3} \left (a -b \right )^{3} d}-\frac {3 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+b \sqrt {a^{2}-b^{2}}}{a \sqrt {a^{2}-b^{2}}}\right ) b^{2}}{2 \sqrt {a^{2}-b^{2}}\, \left (a +b \right )^{3} \left (a -b \right )^{3} d}\) \(692\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*sec(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(-1/2*(6*a^2+3*a*b+2*b^2)*b/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5+2/3*(9*a^2+b^2)*b/(a^
2+2*a*b+b^2)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3-1/2*(6*a^2-3*a*b+2*b^2)*b/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*ta
n(1/2*d*x+1/2*c))/(a*tan(1/2*d*x+1/2*c)^2-b*tan(1/2*d*x+1/2*c)^2-a-b)^3+a*(2*a^2+3*b^2)/(a^6-3*a^4*b^2+3*a^2*b
^4-b^6)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 424 vs. \(2 (169) = 338\).
time = 3.10, size = 905, normalized size = 4.92 \begin {gather*} \left [-\frac {3 \, {\left (2 \, a^{3} b^{3} + 3 \, a b^{5} + {\left (2 \, a^{6} + 3 \, a^{4} b^{2}\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (2 \, a^{5} b + 3 \, a^{3} b^{3}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, a^{4} b^{2} + 3 \, a^{2} b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + 2 \, {\left (11 \, a^{4} b^{3} - 7 \, a^{2} b^{5} - 4 \, b^{7} + {\left (18 \, a^{6} b - 23 \, a^{4} b^{3} + 7 \, a^{2} b^{5} - 2 \, b^{7}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (9 \, a^{5} b^{2} - 8 \, a^{3} b^{4} - a b^{6}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, {\left ({\left (a^{11} - 4 \, a^{9} b^{2} + 6 \, a^{7} b^{4} - 4 \, a^{5} b^{6} + a^{3} b^{8}\right )} d \cos \left (d x + c\right )^{3} + 3 \, {\left (a^{10} b - 4 \, a^{8} b^{3} + 6 \, a^{6} b^{5} - 4 \, a^{4} b^{7} + a^{2} b^{9}\right )} d \cos \left (d x + c\right )^{2} + 3 \, {\left (a^{9} b^{2} - 4 \, a^{7} b^{4} + 6 \, a^{5} b^{6} - 4 \, a^{3} b^{8} + a b^{10}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} b^{3} - 4 \, a^{6} b^{5} + 6 \, a^{4} b^{7} - 4 \, a^{2} b^{9} + b^{11}\right )} d\right )}}, \frac {3 \, {\left (2 \, a^{3} b^{3} + 3 \, a b^{5} + {\left (2 \, a^{6} + 3 \, a^{4} b^{2}\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (2 \, a^{5} b + 3 \, a^{3} b^{3}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, a^{4} b^{2} + 3 \, a^{2} b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) - {\left (11 \, a^{4} b^{3} - 7 \, a^{2} b^{5} - 4 \, b^{7} + {\left (18 \, a^{6} b - 23 \, a^{4} b^{3} + 7 \, a^{2} b^{5} - 2 \, b^{7}\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (9 \, a^{5} b^{2} - 8 \, a^{3} b^{4} - a b^{6}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left ({\left (a^{11} - 4 \, a^{9} b^{2} + 6 \, a^{7} b^{4} - 4 \, a^{5} b^{6} + a^{3} b^{8}\right )} d \cos \left (d x + c\right )^{3} + 3 \, {\left (a^{10} b - 4 \, a^{8} b^{3} + 6 \, a^{6} b^{5} - 4 \, a^{4} b^{7} + a^{2} b^{9}\right )} d \cos \left (d x + c\right )^{2} + 3 \, {\left (a^{9} b^{2} - 4 \, a^{7} b^{4} + 6 \, a^{5} b^{6} - 4 \, a^{3} b^{8} + a b^{10}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} b^{3} - 4 \, a^{6} b^{5} + 6 \, a^{4} b^{7} - 4 \, a^{2} b^{9} + b^{11}\right )} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

[-1/12*(3*(2*a^3*b^3 + 3*a*b^5 + (2*a^6 + 3*a^4*b^2)*cos(d*x + c)^3 + 3*(2*a^5*b + 3*a^3*b^3)*cos(d*x + c)^2 +
 3*(2*a^4*b^2 + 3*a^2*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^
2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c
) + b^2)) + 2*(11*a^4*b^3 - 7*a^2*b^5 - 4*b^7 + (18*a^6*b - 23*a^4*b^3 + 7*a^2*b^5 - 2*b^7)*cos(d*x + c)^2 + 3
*(9*a^5*b^2 - 8*a^3*b^4 - a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 4*a^9*b^2 + 6*a^7*b^4 - 4*a^5*b^6 + a^3*
b^8)*d*cos(d*x + c)^3 + 3*(a^10*b - 4*a^8*b^3 + 6*a^6*b^5 - 4*a^4*b^7 + a^2*b^9)*d*cos(d*x + c)^2 + 3*(a^9*b^2
 - 4*a^7*b^4 + 6*a^5*b^6 - 4*a^3*b^8 + a*b^10)*d*cos(d*x + c) + (a^8*b^3 - 4*a^6*b^5 + 6*a^4*b^7 - 4*a^2*b^9 +
 b^11)*d), 1/6*(3*(2*a^3*b^3 + 3*a*b^5 + (2*a^6 + 3*a^4*b^2)*cos(d*x + c)^3 + 3*(2*a^5*b + 3*a^3*b^3)*cos(d*x
+ c)^2 + 3*(2*a^4*b^2 + 3*a^2*b^4)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a
)/((a^2 - b^2)*sin(d*x + c))) - (11*a^4*b^3 - 7*a^2*b^5 - 4*b^7 + (18*a^6*b - 23*a^4*b^3 + 7*a^2*b^5 - 2*b^7)*
cos(d*x + c)^2 + 3*(9*a^5*b^2 - 8*a^3*b^4 - a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 4*a^9*b^2 + 6*a^7*b^4
- 4*a^5*b^6 + a^3*b^8)*d*cos(d*x + c)^3 + 3*(a^10*b - 4*a^8*b^3 + 6*a^6*b^5 - 4*a^4*b^7 + a^2*b^9)*d*cos(d*x +
 c)^2 + 3*(a^9*b^2 - 4*a^7*b^4 + 6*a^5*b^6 - 4*a^3*b^8 + a*b^10)*d*cos(d*x + c) + (a^8*b^3 - 4*a^6*b^5 + 6*a^4
*b^7 - 4*a^2*b^9 + b^11)*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))**4,x)

[Out]

Integral(sec(c + d*x)/(a + b*sec(c + d*x))**4, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 403 vs. \(2 (169) = 338\).
time = 0.52, size = 403, normalized size = 2.19 \begin {gather*} -\frac {\frac {3 \, {\left (2 \, a^{3} + 3 \, a b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} \sqrt {-a^{2} + b^{2}}} - \frac {18 \, a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 27 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 36 \, a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 32 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 18 \, a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 27 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )}^{3}}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^4,x, algorithm="giac")

[Out]

-1/3*(3*(2*a^3 + 3*a*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) -
b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*sqrt(-a^2 + b^2)) - (18*a^4*b*
tan(1/2*d*x + 1/2*c)^5 - 27*a^3*b^2*tan(1/2*d*x + 1/2*c)^5 + 6*a^2*b^3*tan(1/2*d*x + 1/2*c)^5 - 3*a*b^4*tan(1/
2*d*x + 1/2*c)^5 + 6*b^5*tan(1/2*d*x + 1/2*c)^5 - 36*a^4*b*tan(1/2*d*x + 1/2*c)^3 + 32*a^2*b^3*tan(1/2*d*x + 1
/2*c)^3 + 4*b^5*tan(1/2*d*x + 1/2*c)^3 + 18*a^4*b*tan(1/2*d*x + 1/2*c) + 27*a^3*b^2*tan(1/2*d*x + 1/2*c) + 6*a
^2*b^3*tan(1/2*d*x + 1/2*c) + 3*a*b^4*tan(1/2*d*x + 1/2*c) + 6*b^5*tan(1/2*d*x + 1/2*c))/((a^6 - 3*a^4*b^2 + 3
*a^2*b^4 - b^6)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)^3))/d

________________________________________________________________________________________

Mupad [B]
time = 4.32, size = 378, normalized size = 2.05 \begin {gather*} \frac {a\,\mathrm {atanh}\left (\frac {a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a^2+3\,b^2\right )\,\left (2\,a-2\,b\right )\,\left (a^3-3\,a^2\,b+3\,a\,b^2-b^3\right )}{2\,\left (2\,a^3+3\,a\,b^2\right )\,\sqrt {a+b}\,{\left (a-b\right )}^{7/2}}\right )\,\left (2\,a^2+3\,b^2\right )}{d\,{\left (a+b\right )}^{7/2}\,{\left (a-b\right )}^{7/2}}-\frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (6\,a^2\,b+3\,a\,b^2+2\,b^3\right )}{{\left (a+b\right )}^3\,\left (a-b\right )}-\frac {4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (9\,a^2\,b+b^3\right )}{3\,{\left (a+b\right )}^2\,\left (a^2-2\,a\,b+b^2\right )}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (6\,a^2\,b-3\,a\,b^2+2\,b^3\right )}{\left (a+b\right )\,\left (a^3-3\,a^2\,b+3\,a\,b^2-b^3\right )}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (-3\,a^3-3\,a^2\,b+3\,a\,b^2+3\,b^3\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (-3\,a^3+3\,a^2\,b+3\,a\,b^2-3\,b^3\right )+3\,a\,b^2+3\,a^2\,b+a^3+b^3-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (a^3-3\,a^2\,b+3\,a\,b^2-b^3\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)*(a + b/cos(c + d*x))^4),x)

[Out]

(a*atanh((a*tan(c/2 + (d*x)/2)*(2*a^2 + 3*b^2)*(2*a - 2*b)*(3*a*b^2 - 3*a^2*b + a^3 - b^3))/(2*(3*a*b^2 + 2*a^
3)*(a + b)^(1/2)*(a - b)^(7/2)))*(2*a^2 + 3*b^2))/(d*(a + b)^(7/2)*(a - b)^(7/2)) - ((tan(c/2 + (d*x)/2)^5*(3*
a*b^2 + 6*a^2*b + 2*b^3))/((a + b)^3*(a - b)) - (4*tan(c/2 + (d*x)/2)^3*(9*a^2*b + b^3))/(3*(a + b)^2*(a^2 - 2
*a*b + b^2)) + (tan(c/2 + (d*x)/2)*(6*a^2*b - 3*a*b^2 + 2*b^3))/((a + b)*(3*a*b^2 - 3*a^2*b + a^3 - b^3)))/(d*
(tan(c/2 + (d*x)/2)^2*(3*a*b^2 - 3*a^2*b - 3*a^3 + 3*b^3) - tan(c/2 + (d*x)/2)^4*(3*a*b^2 + 3*a^2*b - 3*a^3 -
3*b^3) + 3*a*b^2 + 3*a^2*b + a^3 + b^3 - tan(c/2 + (d*x)/2)^6*(3*a*b^2 - 3*a^2*b + a^3 - b^3)))

________________________________________________________________________________________